18 research outputs found

    Robust Sliding Mode Fuzzy Control of Industrial Robots using an Extended Kalman Filter Inverse Kinematic Solver

    Get PDF
    This paper presents a sliding mode fuzzy control approach for industrial robots at their static and near static speed (linear velocities less than 5 cm/s). The extended Kalman filter with its covariance resetting is used to translate the coordinates from Cartesian to joint angle space. The translated joint angles are then used as a reference signal to control the industrial robot dynamics using a sliding mode fuzzy controller. The stability and robustness of the proposed controller is proven using an appropriate Lyapunov function in the presence of parameter uncertainty and unknown dynamic friction. The proposed controller is simulated on a 6-DOF industrial robot, namely the Universal Robot-UR5, considering the maximum allowable joint torques. It is observed that the proposed controller can successfully control UR5 under uncertainties in terms of unknown dynamic friction and parameter uncertainties. The tracking performance of the proposed controller is compared with that of the sliding mode control approach. The simulation results demonstrate superior performance of the proposed approach over the sliding mode control method in the presence of uncertainties

    Elliptic membership functions and the modeling uncertainty in type-2 fuzzy logic systems as applied to time series prediction

    Get PDF
    In this paper, our aim is to compare and contrast various ways of modeling uncertainty by using different type-2 fuzzy membership functions available in literature. In particular we focus on a novel type-2 fuzzy membership function–”Elliptic membership function”. After briefly explaining the motivation behind the suggestion of the elliptic membership function, we analyse the uncertainty distribution along its support, and we compare its uncertainty modeling capability with the existing membership functions. We also show how the elliptic membership functions perform in fuzzy arithmetic. In addition to its extra advantages over the existing type-2 fuzzy membership functions such as having decoupled parameters for its support and width, this novel membership function has some similar features to the Gaussian and triangular membership functions in addition and multiplication operations. Finally, we have tested the prediction capability of elliptic membership functions using interval type-2 fuzzy logic systems on US Dollar/Euro exchange rate prediction problem. Throughout the simulation studies, an extreme learning machine is used to train the interval type-2 fuzzy logic system. The prediction results show that, in addition to their various advantages mentioned above, elliptic membership functions have comparable prediction results when compared to Gaussian and triangular membership functions

    Learning Control of Fixed-Wing Unmanned Aerial Vehicles Using Fuzzy Neural Networks

    Get PDF
    A learning control strategy is preferred for the control and guidance of a fixed-wing unmanned aerial vehicle to deal with lack of modeling and flight uncertainties. For learning the plant model as well as changing working conditions online, a fuzzy neural network (FNN) is used in parallel with a conventional P (proportional) controller. Among the learning algorithms in the literature, a derivative-free one, sliding mode control (SMC) theory-based learning algorithm, is preferred as it has been proved to be computationally efficient in real-time applications. Its proven robustness and finite time converging nature make the learning algorithm appropriate for controlling an unmanned aerial vehicle as the computational power is always limited in unmanned aerial vehicles (UAVs). The parameter update rules and stability conditions of the learning are derived, and the proof of the stability of the learning algorithm is shown by using a candidate Lyapunov function. Intensive simulations are performed to illustrate the applicability of the proposed controller which includes the tracking of a three-dimensional trajectory by the UAV subject to time-varying wind conditions. The simulation results show the efficiency of the proposed control algorithm, especially in real-time control systems because of its computational efficiency

    XOR Binary Gravitational Search Algorithm with Repository: Industry 4.0 Applications

    Get PDF
    Industry 4.0 is the fourth generation of industry which will theoretically revolutionize manufacturing methods through the integration of machine learning and artificial intelligence approaches on the factory floor to obtain robustness and sped-up process changes. In particular, the use of the digital twin in a manufacturing environment makes it possible to test such approaches in a timely manner using a realistic 3D environment that limits incurring safety issues and danger of damage to resources. To obtain superior performance in an industry 4.0 setup, a modified version of a binary gravitational search algorithm is introduced which benefits from an exclusive or (XOR) operator and a repository to improve the exploration property of the algorithm. Mathematical analysis of the proposed optimization approach is performed which resulted in two theorems which show that the proposed modification to the velocity vector can direct particles to the best particles. The use of repository in this algorithm provides a guideline to direct the particles to the best solutions more rapidly. The proposed algorithm is evaluated on some benchmark optimization problems covering a diverse range of functions including unimodal and multimodal as well as those which suffer from multiple local minima. The proposed algorithm is compared against several existing binary optimization algorithms including existing versions of a binary gravitational search algorithm, improved binary optimization, binary particle swarm optimization, binary grey wolf optimization and binary dragonfly optimization. To show that the proposed approach is an effective method to deal with real world binary optimization problems raised in an industry 4.0 environment, it is then applied to optimize the assembly task of an industrial robot assembling an industrial calculator. The optimal movements obtained are then implemented on a real robot. Furthermore, the digital twin of a universal robot is developed, and its path planning is done in the presence of obstacles using the proposed optimization algorithm. The obtained path is then inspected by human expert and validated. It is shown that the proposed approach can effectively solve such optimization problems which arises in industry 4.0 environment

    Recurrent Interval Type-2 Fuzzy Wavelet Neural Network with Stable Learning Algorithm: Application to Model-Based Predictive Control

    Get PDF
    Fuzzy neural networks, with suitable learning strategy, have been demonstrated as an effective tool for online data modeling. However, it is a challenging task to construct a model to ensure its quality and stability for non-stationary dynamic systems with some uncertainties. To solve this problem, this paper presents a novel identification model based on recurrent interval type-2 fuzzy wavelet neural network (RIT2FWNN) with new learning algorithm. The model benefits from both advantages of recurrent and wavelet neural networks such as use of temporal data and fast convergence properties. The proposed antecedent and consequent parameters update rules are derived using sliding-mode-control-theory. To evaluate the proposed fuzzy model, it is utilized to design a nonlinear model-based predictive controller and is applied for the synchronization of fractional-order time-delay chaotic systems. Using Lyapunov stability analysis, it is shown that all update rules of the parameters are uniformly ultimately bounded. The adaptation laws obtained in this method are very simple and have closed forms. Some stability conditions are derived to prove learning dynamics and asymptotic stability of the network by using an appropriate Lyapunov function. The efficacy and performance of the proposed method is verified by simulation examples

    An Aerial Robot for Rice Farm Quality Inspection With Type-2 Fuzzy Neural Networks Tuned by Particle Swarm Optimization-Sliding Mode Control Hybrid Algorithm

    Get PDF
    Agricultural robots, or agrobots, have been increasingly adopted in every aspect of farming from surveillance to fruit harvesting in order to improve the overall productivity over the last few decades. Motivated by the compelling growth of the agricultural robots in modern farms, in this work, an autonomous quality inspection over rice farms is proposed by employing quadcopters. Real-time control of these vehicles, however, is still challenging as they exhibit a highly nonlinear behavior especially for agile maneuvers. What is more, these vehicles have to operate under uncertain working conditions such as wind and gust disturbances as well as positioning errors caused by inertial measurement units and global positioning system. To handle these difficulties, as a model-free and learning control algorithm, type-2 fuzzy neural networks (T2-FNNs) are designed for the control of a quadcopter. The novel particle swarm optimization-sliding mode control (PSO-SMC) theory-based hybrid algorithm is proposed for the training of the T2-FNNs. In particular, the continuous version of PSO is adopted for the identification of the antecedent part of the T2-FNNs while the SMC-based update rules are utilized for the online learning of the consequent part during control. In the virtual environment, the quadcopter is expected to perform an autonomous flight including agile maneuvers such as steep turning and sudden altitude changes over a rice terrace farm in Longsheng, China. The simulation results for the T2-FNNs are compared with the outcome of conventional proportional-derivative (PD) controllers for different case studies. The results show that our method decreases the trajectory tracking integral squared error by %26 over PD controllers in the ideal case, while this ratio goes up to %95 under uncertain working conditions

    Optimization of Interval Type-2 Fuzzy Logic System Using Grasshopper Optimization Algorithm

    Get PDF
    The estimation of the fuzzy membership function parameters for interval type 2 fuzzy logic system (IT2-FLS) is a challenging task in the presence of uncertainty and imprecision. Grasshopper optimization algorithm (GOA) is a fresh population based meta-heuristic algorithm that mimics the swarming behavior of grasshoppers in nature, which has good convergence ability towards optima. The main objective of this paper is to apply GOA to estimate the optimal parameters of the Gaussian membership function in an IT2-FLS. The antecedent part parameters (Gaussian membership function parameters) are encoded as a population of artificial swarm of grasshoppers and optimized using its algorithm. Tuning of the consequent part parameters are accomplished using extreme learning machine. The optimized IT2-FLS (GOAIT2FELM) obtained the optimal premise parameters based on tuned consequent part parameters and is then applied on the Australian national electricity market data for the forecasting of electricity loads and prices. The forecasting performance of the proposed model is compared with other population-based optimized IT2-FLS including genetic algorithm and artificial bee colony optimization algorithm. Analysis of the performance, on the same data-sets, reveals that the proposed GOAIT2FELM could be a better approach for improving the accuracy of the IT2-FLS as compared to other variants of the optimized IT2-FLS

    Robust Sliding Mode Fuzzy Control of Industrial Robots Using an Extended Kalman Filter Inverse Kinematic Solver

    No full text
    This paper presents a sliding mode fuzzy control approach for industrial robots at their static and near static speed (linear velocities less than 5 cm/s). The extended Kalman filter with its covariance resetting is used to translate the coordinates from Cartesian to joint angle space. The translated joint angles are then used as a reference signal to control the industrial robot dynamics using a sliding mode fuzzy controller. The stability and robustness of the proposed controller is proven using an appropriate Lyapunov function in the presence of parameter uncertainty and unknown dynamic friction. The proposed controller is simulated on a 6-DOF industrial robot, namely the Universal Robot-UR5, considering the maximum allowable joint torques. It is observed that the proposed controller can successfully control UR5 under uncertainties in terms of unknown dynamic friction and parameter uncertainties. The tracking performance of the proposed controller is compared with that of the sliding mode control approach. The simulation results demonstrate superior performance of the proposed approach over the sliding mode control method in the presence of uncertainties
    corecore